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Abstract. In this paper, we address the development of a global optimization procedure for the
problem of designing a water distribution network, including the case of expanding an already
existing system, that satisfies specified flow demands at stated pressure head requirements. The
proposed approach significantly improves upon a previous method of Sherali et al. (1998) by way of
adopting tighter polyhedral relaxations, and more effective partitioning strategies in concert with a
maximal spanning tree-based branching variable selection procedure. Computational experience on
three standard test problems from the literature is provided to evaluate the proposed procedure. For
all these problems, proven global optimal solutions within a tolerance of 10−4% and/or within 1$ of
optimality are obtained. In particular, the two larger instances of the Hanoi and the New York test
networks are solved to global optimality for the very first time in the literature. A new real network
design test problem based on the Town of Blacksburg Water Distribution System is also offered to
be included in the available library of test cases, and related computational results are presented.
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1. Introduction

The design of water distribution systems has consistently received a great deal
of attention because of its importance to society. Even so, many of the existing
pipe networks in older urbanized areas function at severely reduced levels of ef-
ficiency, and in some cases, are inadequate with respect to meeting the required
pressure and flow demands. The investments associated with the installation, ex-
pansion and maintenance of water distribution systems are very high, and account
for the largest proportion in municipal maintenance budgets. An important com-
ponent in this process of designing a cost effective water distribution system or
extending a pre-existing network is to design the sizes of the various pipes that
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are capable of satisfying the flow demand, in addition to satisfying the minimum
pressure head and hydraulic redundancy requirements. However, this least cost
pipe design problem is a hard nonconvex optimization problem having a number of
local optima, and has hence proven difficult to solve. A number of research efforts
over the last two decades have focused on solving this problem, most of them
generating improved suboptimal solutions for several standard test problems from
the literature, with no adequate lower bounds to evaluate the prescribed solutions.
Three notable exceptions discussed below that are capable of providing solutions
within a proven tolerance of a global optimum are the methods due to Eiger et
al. (1994), Sherali and Smith (1997), and Sherali et al. (1998). Our development
in the present paper is a further enhancement of these three procedures. For other
related expositions, we point the reader to the survey by Lansey and Mays (1985),
the holistic integrated pipe-reliability-and-cost network optimization approach and
implementation discussion in Sherali and Smith (1993), and the recent application
of genetic algorithms as described in Dandy et al. (1996).

A first global optimization approach to the least cost pipe sizing decision was
proposed by Eiger et al. (1994). A branch-and-bound algorithm is developed in this
paper, based on partitioning the hyperrectangle restricting the flows into several
subrectangles. At each node of the branch-and-bound tree, a subgradient-based
heuristic is applied to determine an upper bound via the nonsmooth, nonconvex,
projection of the problem onto the space of the flow variables. An independent
relaxed, duality-based linear programming formulation is used to compute lower
bounds.

Sherali and Smith (1997) present another global optimization approach for an
arc-based formulation of the problem, in contrast with the loop-and-path based for-
mulation employed by Eiger et al. (1994). They employ a Reformulation-Lineariza-
tion Technique (RLT) to construct tight linear programming relaxations for the
given problem in order to compute lower bounds. The procedure is embedded
in a branch-and-bound scheme. Convergence to an optimal solution is induced
by coordinating this process with an appropriate partitioning scheme. Several test
problems from the literature are solved to exact global optimality for the first time
using this approach. In particular, these results indicate that some of the solutions
reported by Eiger et al. (1994) are in error due to a degree of infeasibility in the
flow conservation constraints.

Sherali et al. (1998) provide an alternative global optimization approach that
enhances the method of Eiger et al. (1994), thereby enabling them to solve the
Hanoi network test problem to within 0.486% of optimality. This significantly
improved upon the previously best solution reported in the literature. In this pro-
cedure, they derive a linear lower bounding problem by relaxing the nonlinear
constraints in the transformed space via polyhedral outer approximations. Up-
per bounds are computed by solving a projected linear program which uses the
flow conserving solution generated by the lower bounding problem. These bound-
ing strategies are embedded within a branch-and-bound algorithm. A partitioning
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scheme is employed that induces a convergent process toward a feasible solution
that lies within any prescribed accuracy tolerance of global optimality.

The global optimization method addressed in the present paper provides a fur-
ther enhancement of Sherali et al.’s (1998) polyhedral outer approximation scheme
by way of (a) employing tighter relaxations; (b) using a maximal spanning tree
based projected space partitioning scheme that dramatically reduces the compu-
tational effort, and (c) designing a more effective branching variable selection
strategy. An alternative RLT-based relaxation that is more effective than the one
proposed by Sherali and Smith (1997) is also developed and tested for comparison
purposes. The foregoing enhancements are shown to substantially reduce compu-
tational effort while determining proven global optimal solutions that lie at least
within 10−4% of optimality to standard test problems available in the literature.
The results provide improved incumbent solutions over those previously reported
in the literature for all these problems, and particularly so, for the two larger Hanoi
and New York City problems. In fact, for the latter problem, not even a reasonable
lower bound had previously been reported. We derive a tight global lower bound
for this problem for the first time, solving this test case to within 10−6% (or $0.4)
of optimality.

The remainder of this paper is organized as follows. Section 2 presents the net-
work optimization model, and Section 3 derives the proposed linear programming
lower bounding problem and the upper bounding heuristic. The branch-and-bound
algorithm is described in Section 4. Section 5 presents extensive computational
results on test problems from the literature, as well as for a new Blacksburg network
that is offered as another test case to researchers. Finally, Section 6 concludes the
paper with a discussion on possible algorithmic variants and further enhancements.

2. Model Formulation

Consider a distribution networkG(N,A) comprised of a set of reservoirs or supply
nodes and a set of consumption or demand nodes. Let these nodes be collectively
identified by the index setN = {1,2, . . . ,n}, where the set of source nodes is
denoted byS ⊂ N and the set of demand nodes is denoted byD ⊂ N such that
N = S ∪ D. Associate with each node a quantitybi that represents the net water
supply rate or demand rate corresponding to nodei in the index setN. We will
assume thatbi > 0 for i ∈ S andbi 6 0 for i ∈ D. To ensure feasibility, we
assume that the total supply rate is at least equal to the total demand rate.

For each pipe (new or existing) that connects a certain designated node pairi
and j, wherei, j ∈ N, i < j , we create a (notationally) directed arc(i, j) ∈ A.
For each(i, j) ∈ A, let Lij denote the pipe length corresponding to a connection
in the network between the nodesi and j. If we are working on the more general
problem of expanding an existing network, the problem becomes one of design-
ing new connections as well as constructing parallel pipe links that need to be
installed between certain specified node pairsi and j, similar to the consideration
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of Loganathan et al. (1995). (When the existing pipe is beingreplaced, we simply
treat this case similar to that of designing a new connection between the corres-
ponding nodes.) Subramanian (1999) describes the transformations necessary to
avoid parallel multi-arcs in the resulting model formulation. Hence, we assume
that each(i, j) ∈ A represents a unique arc. Let us denote the set of arcs inA
that are to benewly designedasP, and letA − P represent theexisting linksin
the network. We assume that each link that needs to be designed is constructed
from segments of lengths having standard available diameters, chosen from the set
{dk, k = 1, . . . , K}. Also, let us denote byck the cost per unit length for a pipe of
diameterdk .

Associated with each link connecting node pairs(i, j) ∈ A is the decision
variableqij that represents the flow rate (m3/hr). Note that this variable may be
nonnegative or negative, thus permitting flow in either direction. A positive flow
value means that flow is along the specified conventional direction of the arc. The
valueqij associated with each link is assumed to lie between some analytically
determined minimum and maximum boundsqminij andqmaxij , that may appro-
priately be of either sign. We define the hyperrectangle restricting the flowsq as
� = {q : qmin 6 q 6 qmax}, where the (boldface) notationq min andq max
with the subscripts dropped denotes the corresponding vectors of lower and upper
bounds. Sherali et al. (1998) discuss procedures for determining these bounds on
the flows from the network configuration using logical arguments (without making
anya priori assumption on the nature of the optimal flow distribution).

Our next set of decision variables relates to the lengths of pipe segments having
different standard diameters, that comprise each link of the network. Letxijk denote
the length of segment of diameterk in the link (i, j) ∈ A, and letxij be the vector
having components(xijk, k = 1, . . . , K). We assume that the variablexijk is fixed
at a valuex̃ijk for all arcs(i, j) ∈ A− P , ∀k = 1, . . . K.

Let us now consider the energy heads at the various nodes in the network.
For each nodei ∈ N , let Ei denote its ground elevation, and letHi (a variable)
denote the established head aboveEi . Additionally, for the source nodesi ∈ S,
let Fi denote the fixed maximum available energy head, and suppose that there is
an opportunity to further raise this head by an amountHsi at an annualized cost
csi > 0 per unit energy head, as suggested by Rowell and Barnes (1982). Corres-
pondingly, for each demand nodei ∈ D, suppose that there is the requirement that
at a flow equilibrium, the established head(Hi+Ei) at this node lies in the interval
[HiL,HiU ] whereHiL < HiU .

The pressure loss (or head-loss) in a pipe due to friction, given by[(Hi +Ei)−
(Hj + Ej)] for a link (i, j), can be described by the empirical Hazen-William
equation as follows (see Walski, 1984), where the sign depends on the direction
of flow.

8(q,CHW , d, x) = (1.52)104 sign(q)|q/CHW |1.852d−4.87x (2.1)

where



WATER DISTRIBUTION NETWORK DESIGN PROBLEMS 5

8 = pressure head-loss (in meters) assuming smooth-flow conditions in a given
pipe segment,
q = water flow rate in the pipe (m3/hr),
CHW = Hazen-Williams coefficient based on roughness and diameter,
d = pipe diameter (in centimeters),
x = pipe length (in meters).

For our model, the head loss in a pipe that has several potential segments of
varying diameter and roughness is computed as follows:

8ij (qij , xij ) =
K∑
k=1

8(qij , CHW(ijk), dk, xijk), wherexij ≡ (xijk, k = 1, . . . , K).

(2.2)

The network optimization problem NOP, restricted on�, can now be formu-
lated as follows.
NOP(�):

Minimize
∑
(i,j)∈P

K∑
k=1

ckxijk +
∑
i∈S

csiHsi (2.3a)

subject to

8ij (qij , xij ) = (Hi + Ei)− (Hj + Ej) ∀(i, j) ∈ A (2.3b)
K∑
k=1

xijk = Lij ∀(i, j) ∈ P (2.3c)∑
j∈FS(i)

qij −
∑

j∈RS(i)
qji = bi ∀i ∈ D (2.3d)

∑
j∈FS(i)

qij −
∑

j∈RS(i)
qji 6 bi ∀i ∈ S (2.3e)

qminij 6 qij 6 qmaxij ∀(i, j) ∈ A (2.3f)

Hi + Ei 6 Fi +Hsi ∀i ∈ S (2.3g)

HiL 6 Hi + Ei 6 HiU ∀i ∈ D (2.3h)

Hsi > 0 ∀i ∈ S (2.3i)

xijk > 0 ∀(i, j) ∈ P, k = 1, . . . , K

xijk = x̃ijk ∀(i, j) ∈ A− P, k = 1, . . . , K.
(2.3j)

The objective function, Equation (2.3a), denotes the total cost of the pipes and the
cost of the additional head generated at each source node. Constraints (2.3b) are
the conservation of energy equations, and along with Constraints (2.3h), ensure that
the hydraulic energy loss over each chain in the network is such that the minimum
head requirements (HiL) are met for each demand node. It may be noted that
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Constraints (2.3b) implicitly enforce that the hydraulic energy loss in each loop
in the network is zero. The link length constraints are represented by Equation
(2.3c). Equations (2.3d) and (2.3e) enforce conservation of flow at all nodes, and
Equation (2.3f) bounds the flow value in each link to lie in a specified valid or
implied interval. These bounds that define� will be suitably modified during the
course of the algorithm for solving Problem NOP. Constraints (2.3g) and (2.3h)
represent restrictions on the maximum variable head at each source node, and the
head requirements at each demand node, respectively. Finally, Constraints (2.3i)
and (2.3j) enforce logical nonnegativity restrictions, and require that the variables
xijk are fixed at the corresponding pre-specified valuesx̃ijk for the existing arcs
(i, j) ∈ A− P in the network.

Our principal set of decision variables are the lengthsxijk of the different seg-
ments comprising each link(i, j) ∈ P , and the additional headHsi to be developed
at each source nodei ∈ S. The resulting headsHi at each nodei ∈ N (above the
elevationEi of the node) and the flowsqij in the links(i, j) ∈ A are also problem
variables that happen to be governed by the foregoing design variables.

3. Lower and Upper Bounding Problems

The frictional head loss expression in the Constraints (2.3b) cause NOP(�) to
become nonlinear and nonconvex. Following Eiger et al. (1994) and Sherali et al.
(1998), we take advantage of the monotone nature of these constraints to transform
the problem NOP(�) into a set of newly defined variables, and accordingly, de-
velop suitable relaxations for the flow conservation constraints that turn out to be
nonlinear in the projected space of these new decision variables.

Since the relations derived subsequently hold true for each link, the subscripts
defining the links will be dropped for convenience. Equation (2.2) which appears
in Constraints (2.3b) can be written as follows using Equation (2.1), for any link
having a flowq and a length segment vectorx = (xk, k = 1, . . . , K).

8(q, x) =
K∑
k=1

sign(q)|q|1.852(1.52)104(CHW(k))
−1.852d−4.87

k xk. (3.1)

Denoting

v(q) ≡ sign(q)|q|1.852, (3.2)

Equation (3.1) can be rewritten as follows,

8(q, x) =
K∑
k=1

v(q)αkxk, (3.3)

whereαk ≡ (1.52)104(CHW(k))
−1.852d−4.87

k . (3.4)
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By the monotonicity ofv(q), we can represent its value for anyq as some convex
combination of its minimum and maximum valuesv(qmin) andv(qmax), hence-
forth denoted asvmin andvmax, respectively.

v(q) = λvmin+(1− λ)vmax, for some 06 λ 6 1. (3.5)

Using the representation (3.5) in Equation (3.3) and rearranging terms, we get,

8(q, x) =
K∑
k=1

(vmin)αk(λxk)+
K∑
k=1

(vmax)αk(1− λ)xk. (3.6)

We now define our new decision variables as

x1
k = λxk andx2

k = (1− λ)xk, (3.7)

so that

xk = x1
k + x2

k . (3.8)

Note that for the existing pipes,xk is fixed at a valuẽxk (some possibly zero) for
all k. Equation (3.6) can now be rewritten in terms of the new decision variables as

8(q, x) =
K∑
k=1

(vmin)αkx
1
k +

K∑
k=1

(vmax)αkx
2
k . (3.9)

Note that in the space of the new decision variables,x1, x2 andλwe have linearized
the energy conservation constraints by substituting (3.9) on the left-hand side of
(2.3b), but at the expense of introducing nonlinearity elsewhere in the problem.
Specifically, this nonlinearity arises in two sets of relationships. First it occurs in
the nonlinear representation (3.7) that accompanies the (linear) relationship (3.8).
Second, the flowq (for each generic link) is now given via (3.2) and (3.5) by the
following functionq(λ),

q(λ) = sign[λ vmin+(1− λ) vmax]|λ vmin+(1− λ) vmax|1/1.852. (3.10)
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Using the foregoing transformations, we therefore obtain an alternative equivalent
representation for Problem NOP (�) as follows.

NOP(�):

Minimize
∑
(i,j)∈P

K∑
k=1

ck(x
1
ijk + x2

ijk)+
∑
i∈S

csiHsi (3.11a)

subject to:
K∑
k=1

(vminij )αijkx
1
ijk +

K∑
k=1

(vmaxij )αijkx
2
ijk = (Hi + Ei)− (Hj + Ej)

∀(i, j) ∈ A (3.11b)

K∑
k=1

x1
ijk +

K∑
k=1

x2
ijk = Lij ∀(i, j) ∈ P (3.11c)∑

j∈FS(i)
qij −

∑
j∈RS(i)

qji = bi ∀i ∈ D (3.11d)

∑
j∈FS(i)

qij −
∑

j∈RS(i)
qji ≤ bi ∀i ∈ S (3.11e)

qij = sign[λijvminij +(1− λij )vmaxij ]|λijvminij +(1− λij )vmaxij |1/1.852

∀(i, j) ∈ A (3.11f)

qminij ≤ qij ≤ qmaxij ∀(i, j) ∈ A (3.11g)

Hi + Ei ≤ Fi +Hsi ∀i ∈ S (3.11h)

HiL ≤ Hi + Ei ≤ HiU ∀i ∈ D (3.11i)

Hsi ≥ 0 ∀i ∈ S (3.11j)

x1
ijk , x

2
ijk ≥ 0 ∀(i, j) ∈ P, k = 1, . . . , K

(3.11k)

0≤ λij ≤ 1 ∀(i, j) ∈ A (3.11l)

x1
ijk = λij x̃ijk , and x2

ijk = (1− λij )x̃ijk ∀(i, j) ∈ A− P, k = 1, . . . , K
(3.11m)

x1
ijk = λij xijk, andx2

ijk = (1− λij )xijk, wherexijk ≥ 0,

∀(i, j) ∈ P, k = 1, . . . , K. (3.11n)

We will now construct relaxations for the nonlinear relationships (3.11f) and (3.11n)
in order to derive lower bounding linear programs.
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3.1. LOWER BOUNDING RELAXATION LB (�)

To derive this relaxation for Problem NOP(�) as given by (3.11), we first omit
(3.11n), but replace it with its following aggregate relationship based on (2.3c):

K∑
k=1

x1
ijk = λijLij ∀(i, j) ∈ P. (3.12)

Note that the symmetric relationship

K∑
k=1

x2
ijk = (1− λij )Lij ∀(i, j) ∈ P

is implied by (3.12) and (3.11c). Next, we relax the nonlinear relationship (3.11f)
by constructing a polyhedral outer-approximation to this function which relates
qij to λij∀(i, j) ∈ A as in Sherali et al. (1998). In the most general case, this
function is concave-convex as depicted in Figure 1 for the generic representation
q(λ) stated as a function ofλ as in (3.10). In this figure,̄λ is such that, if it exists,
the tangential support toq(λ) at λ = (λ̄) passes through the coordinate(1,qmin)
in the (λ, q) space. Similarly,̃λ is such that, if it exists, the tangential support to
q(λ) at λ = λ̃ passes through the coordinate (0,qmax) in the (λ, q) space. These
two values are respectively computed via Equations (3.13) and (3.14) given below
using a bisection search, and each has a solution if and only if the corresponding
entity λ̄ or λ̃ exists.

qmin−q(λ̄)− (1− λ̄)q ′(λ̄) = 0 where 0< λ̄ < 1, (3.13)

qmax−q(λ̃)+ λ̃q ′(λ̄) = 0 where 0< λ̃ < 1, (3.14)

and where, the derivative (or slope) ofq(λ), denoted byq ′(λ), is given by

q ′(λ) =(vmin−vmax)

1.852
|λ vmin+(1− λ)vmax| −0.852

1.852 ,

for λ ∈ [0,1], λ vmin+(1− λ)vmax 6= 0.

To enhance the relaxation used in Sherali et al. (1998), we construct the fol-
lowing more refined support structure. For each of the following cases, the cor-
responding nonlinear constraint (3.11f) is replaced by a set of affine inequalities
that this relationship must satisfy in the(λ, q)-space. For the general concave-
convex case of Figure 1, if̄λ and λ̃ exist, we construct six supporting facets for
the polyhedral approximation via tangents at{0, λ̄/2, λ̄} and at{λ̃, (1+ λ̃)/2,1} as
shown in Figure 1. In casēλ does not exist, but̃λ does, or vice versa, we replace
the corresponding undefined supports with the affine concave or convex envelope,
respectively, that pass through (0,qmax) and (1,qmin). This case yields only four
supporting facets for the polyhedral approximation.
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Figure 1. Polyhedral outer-approximation for relating q(λ) to λ.

In caseq(λ) is a concave function ofλ (i.e., qmax> 0 andqmin ≥ 0), we
construct the affine convex envelope along with tangential supports at the points
λ = 0, 0.25, 0.5, 0.8, and 0.9. Similarly, ifqmax≤ 0 andqmin < 0, so thatq(λ)
is a convex function ofλ, we construct its affine concave envelope along with
tangential supports at the pointsλ = 0.1, 0.2, 0.5, 0.75, and 1. Each of these cases
produce six facets for the polyhedral approximation that replaces (3.11f) in the
relaxation LB(�). We also experimented with using four facets for the polyhedral
approximation, instead of the six used here, similar to the consideration of Sherali
et al. (1998). We provide some comparative computational experience for this in
Section 5.

3.2. LOWER BOUNDING RELAXATION RLT(�)

As an alternative to LB(�), we derive a further enhanced lower bounding procedure
that is motivated by the Reformulation-Linearization Technique (RLT) of Sherali
and Tuncbilek (1992) for solving polynomial programming problems. Our purpose
here is to study the tradeoff between a quicker versus a more involved, but stronger,
lower bounding procedure with respect to the overall effort for solving the problem.
To construct such a lower bounding problem RLT(�), we augment Problem LB(�)
by incorporating certain additional constraints that are generated using the RLT
concept as follows.

3.2.1. Reformulation Step

The following quadratic valid constraints are generated based on the products of
the stated pairs of inequalities (written in the form{·} ≥ 0), or based on products
of equations with variables.
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(a) Using the pipe length constraints in (3.11c), generate the equality product
constraints(

K∑
k=1

x1
ijk +

K∑
k=1

x2
ijk

)
qij = Lijqij ∀(i, j) ∈ P.

(b) Multiply each constraint in LB(�) that represents a linear inequality inqij
andλij for the corresponding polyhedral approximation to (3.11f), with each
corresponding variablexijk,∀(i, j) ∈ P, k = 1, . . . , K.

3.2.2. Linearization Step

Linearize the resulting product constraints generated above by substitutingyijk =
qij xijk,∀(i, j) ∈ P, k = 1, . . . , K, and by using Equations (3.7) and (3.8). This
produces a linear programming lower bounding problem RLT(�) that incorporates
certain additional valid inequalities that must be satisfied by any feasible solution
to the nonlinear problem NOP(�) given by (3.11).

3.2.3. Upper Bounds

For computing upper bounds on the least cost pipe sizing problem NOP(�), we fix
the conserving flow solution as obtained via the lower bounding problem LB(�) or
RLT(�) within the Problem NOP(�), and solve the resulting linear programming
problem. If this problem is feasible, it yields an upper bounding completion to this
fixed flow. As an alternative, a more refined, but computationally non-intensive
local search heuristic could be employed to derive improved upper bounds.

4. A Branch-and-Bound Algorithm

We embed the lower and upper bounding schemes described in the foregoing sec-
tion in a branch-and-bound procedure to solve NOP(�) globally to any specified
percentage tolerance (100ε%) of optimality. Each branch-and-bound node prin-
cipally differs in the specification of the hyperrectangle�. The hyperrectangle
associated with nodet of the branch-and-bound tree at the main iteration or stage
S of the procedure is denoted by�S,t = {q : qminS,t ≤ q ≤ qmaxS,t}. In
our implementation of the branch-and-bound procedure, we successively partition
the hyperrectangle defined by the initial bounds�1,1 ≡ � on the flow variables
into smaller and smaller hyperrectangles. At any stageSof the branch-and-bound
algorithm, we have a set of active or nonfathomed nodes denoted asTS . We select
an active nodet∗ in TS that has the least lower bound (this is termed as theglobal
lower boundat stageS), breaking ties arbitrarily, and partition this node using a
variable selection strategy that is described below. The selection of a branching
variable according to this strategy ensures convergence of the overall procedure to
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a global optimum for NOP(�) using the general theory discussed in Sherali et al.
(1998). This process continues by solving the bounding problems for the resulting
two node subproblems, and then fathoming the nodes for which the lower bound is
greater than or equal to UB(1− ε), where UB is the value of the current incumbent
solution, and 0< ε < 1 is a suitable tolerance. (We usedε = 10−6 in our com-
putations, thereby obtaining solutions to within 10−4% of optimality.) Whenever
the set of active nodes is empty, the process terminates. A formal statement of
this algorithm is given in Sherali et al. (1998). Here, we focus on the principal
difference based on (a) a reduction in the potential set of branching variables, and
(b) a strategy for selecting a branching variable from this set. These two features
are described in succession below.

4.1. MAXIMAL SPANNING TREE BASED APPROACH FOR REDUCING THE

CANDIDATE SET OF BRANCHING VARIABLES (MSTR)

We can reduce the number of possible candidates for selecting a branching vari-
able by restricting these to be a set of independent arcs inA. To see this, suppose
that at the beginning of the branch-and-bound procedure, we construct a maximal
spanning tree for the distribution network via Kruskal’s (1956) procedure, using
arc weights(qmaxij −qminij )∀(i, j) ∈ A. The supply nodes are connected to a
dummy sink via slack arcs having a large weight for this purpose, in order to bal-
ance supply and demand, and thereby obtain an equality flow conservation system.
Hence, all these slack arcs are a part of the maximal spanning. LetB denote the
set of arcs in this spanning tree. The remaining arcs{A − B} in the network are
designated as non-tree arcs and form the set from which the branching variables
are selected. Note that such a spanning tree yields a valid basis for the underlying
network flow problem, and given the flows on the independent nonbasic arcs, the
corresponding flows on the dependent basic arcs are uniquely determined. Hence,
only the nonbasic arcs corresponding to this (fixed) basis are selected for parti-
tioning flow intervals. Upon fixing the flow bounds for the set of nonbasic arcs, the
flow bounds for the basic arcs are updated using the representation of the dependent
basic variables in terms of the independent nonbasic variables (see Bazaraa et al.,
1990). Since most water distribution networks are almost ‘tree-like’, this reduction
in the potential set of branching variables is substantial.

Given the flow bounds on the nonbasic arcs, the basic flow bounds are updated
following the reverse thread (post-order) recursive tree traversal procedure that is
typically employed for computing flows in network simplex implementations (see
Bazaraa et al. (1990), for example). At any step in this process, while examining
a nodej with the basic arc(i, j) ∈ B leading into nodej (nodei being the prede-
cessor of nodej), we perform the following update operation (a similar operation
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is performed if the corresponding arc is (j, i), leading out of nodej):

qmaxij = min

qmaxij ,−bj −
∑
k∈RS(j)
k 6=i

qminkj +
∑

k∈FS(j)
qmaxjk

 (4.1)

qminij = max

qminij ,−bj −
∑
k∈RS(j)
k 6=i

qmaxkj +
∑

k∈FS(j)
qminjk

 (4.2)

Hence, as the flow interval lengths for nonbasic arcs shrink to zero, so do the
corresponding interval lengths for the basic arcs since the right-hand sides of (4.11)
and (4.12) coincide in this case at each step.

4.2. BRANCHING VARIABLE SELECTION STRATEGY

The recommended rule combines a pair of strategies based primarily on the fact
that the polyhedral approximations in the(q, λ) space are less exact when the flow
is distant from both of its bounds. Hence, when partitioning any node of the branch-
and-bound tree, the base-strategy is to select the branching variable (r, s) according
to

(r, s) ∈ argmax{min{qmaxij −q̂ij , q̂ij − qminij } : (i, j) ∈ A− B}, (4.3)

whereB is the set of tree arcs in the MSTR procedure described above, andq̂ is the
flow solution produced by solving the lower bounding relaxation. The bounding in-
tervals forqrs in the two children node subproblems are then taken as[qminrs, q̂rs]
and[q̂rs,qmaxrs], respectively.

However, even if the nonbasic flow values are driven close to either their lower
or upper bounding interval end-points as the algorithm progresses, if the implied
interval bounds on the basic arcs as determined by (4.11) and (4.12) are not suffi-
ciently tight, the same situation may not be the case for these basic arcs, thereby
making the process stall using this strategy. Hence, when a substantial improve-
ment in the global lower bound is not obtained for any pair of successive stages,
i.e., if at any stageS+ 1, it turns out that 0.9GLBS+1 ≤ GLBS, then at this stage,
we adopt an alternative branching variable selection strategy. As explained below,
this also induces convergence to a global optimum.

The proposed switchover strategy is based on simply partitioning the longest
flow interval among the nonbasic arcs, i.e., the branching variable index (r, s) is
selected as

(r, s) ∈ argmax
(i,j)

{qmaxij −qminij : (i, j) ∈ A− B}. (4.4)

Having selected (r, s) according to (4.14) in this case, we bi-partition the interval
qminrs,qmaxrs] by cutting it at the value 0 ifqminrs < 0< qmaxrs, or by bisecting
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this interval, otherwise. We found this combination strategy to be more effective
than using either scheme on its own, or using the strategy prescribed in Sherali et
al. (1998) (see Subramanian (1999) for detailed comparative results).

To see how this induces convergence, let us defineδij , for each(i, j) ∈ A, as
the discrepancy in the actual (Equation (2.3b)) versus the approximate (Equation
(3.11b)) head-loss computation relative to the solution produced by the relaxed
solution, and denote1 = max{δij : (i, j) ∈ A}. Note that if1 = 0 (empirically
measured by1 = 10−6 in our implementation), then we will have achieved an
optimal solution to the current node subproblem, since then, the solution (q, Hs, H,
x) wherex ≡ x1+x2, that is produced by the relaxation LB(�) (or RLT(�)) will be
feasible to NOP(�) as defined in (2.3), yielding the same objective value. Hence,
this node can be fathomed after updating the incumbent solution. Moreover, when
qminij = qmaxij ∀(i, j) ∈ A− B, we will also haveqminij = qmaxij ∀(i, j) ∈ B
by (4.1) and (4.2), and then as shown in Sherali et al. (1998), this will imply that the
condition1 = 0 holds true, thereby indicating optimality for the current subprob-
lem. Hence, if we examine any path of the branch-and-bound tree associated with
selecting the node having the least lower bound at each stage, since the condition
0.9GLBS+1 > GLBS can hold only finitely often along this path, this induces
a process whereby{qmaxij −qminij } → 0∀(i, j) ∈ A − B, leading as above to
1→ 0 along such a path. Therefore, a global optimum is recovered in the limit.

5. Computational Experience

In this section, we apply the proposed branch-and-bound algorithm to three stand-
ard test problems from the literature, and a newly generated Blacksburg network.
The algorithms were implemented on a SUN SPARC 10 UNIX workstation, us-
ing the CPLEX 6.0 callable library to solve the linear programming problems.
The computer code was written in C++. The algorithm was implemented using a
termination criterion ofε = 10−6. In addition, we also experimented with using
a lesser number of supporting hyperplanes (four) in lieu of six as discussed in
Section 3 for constructing the lower bounding linear programs, with and without
RLT enhancements. The computational results and the best design configuration
for each of these four networks are presented sequentially below.

Test Problem 1: Two-Loop Network

This is a single source test problem originally presented by Alperovits and Shamir
(1977). (See Sherali et al. (1998) for a description of the network configuration and
for the set of initial bounds on the flows. The latter were logically determined as
previously stated in Section 3.) The set of commercially available pipes were taken
as having diametersd (inches) given by{1,2,3,4,6,8,10,12,14,16, 18,20,22,
24}, with the corresponding costs per unit length ($/meter) being{2,5,8,11,16,23,
32,50,60,90,130,170,300,550}. Note that the original Alperovits and Shamir
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Table Ia. Computational results for the Two-Loop Network

ns Global Lower Global Upper # LP CPU time

Bound Bound solved (sec)

4 403385.10 403385.40 141 11.64

6 403385.09 403385.41 147 18.05

Table Ib. Optimum design for the Two-Loop Network (ε = 10−6)

Arc # Segments having Flow (m3/hr) Diameter Head-Loss (m)

Length (m) (inches)

1 1000 1120.0 18 6.749242

2 795.408540 368.331588 10 11.982436

2 204.591460 368.331588 12 1.268322

3 1000 651.668412 16 4.393325

4 999.998776 0.975686 1 18.857409

4 0.001224 0.975686 2 0.000001

5 310.354145 530.692726 14 1.786092

5 689.645855 530.692726 16 2.071341

6 11.139149 200.692726 8 0.161574

6 988.860851 200.692726 10 4.838426

7 98.493861 268.331588 8 2.446478

7 901.506139 268.331588 10 7.553516

8 1000 −0.692726 1 −10.000004

(1977) test problem excludes certain pipe diameters, whereas several authors have
later solved this problem by including all the possible aforementioned diameters.
To enable a comparison, as well as from a practical viewpoint, we permit the
selection of all commercially available pipe diameters. Table 1a summarizes the
results obtained using different numbers of supports (ns) per arc, and Table 1b
provides the key information regarding the best design obtained.

Among the more recent results on this problem, the heuristic of Loganathan et
al. (1995) found a solution having a total cost of $403,657. Sherali et al. (1998) ob-
tained a somewhat improved solution with an objective value of $403,390. Earlier,
Sherali and Smith (1997) had recently obtained a global lower bound of $403,385
on this problem, along with a feasible solution of $403,386, which is $1 within
global optimality. Their algorithm, when implemented on the same computer and
using CPLEX 2.0 to solve the LP relaxations, enumerated only 49 nodes, but con-
sumed 342 CPU seconds due to the size of their lower bounding problem. The best
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Table IIa. Computational results for the Hanoi network

ns Global Lower Global Upper # LP CPU time

Bound Bound solved

4 6055536.43 6055542.48 1533 245.44 sec

6 6055536.31 6055542.37 1075 552.82 sec

solution presented in Table 1b is obtained using our branch-and-bound procedure
with four supporting hyperplanes per arc. This solution is the most accurate one
reported in the literature, and has an objective value that lies within $0.3 of global
optimality, and was derived while consuming only 12 CPU seconds. We comment
that the use of the procedure MSTR resulted in a reduction in computational effort
by a factor of 5, hence underscoring the usefulness of this scheme.

Test Problem 2: Hanoi Network

The Hanoi network is a single source network consisting of three basic loops,
thirty-two nodes and thirty-four links. The network configuration, arc definitions,
and flow bounds are given in Sherali et al. (1998), and the other data appears
in Fujiwara and Khang (1990). Table 2a presents the results obtained using our
algorithm, and Table 2b provides the key design parameters for the best solution
reported.

Eiger et al. (1994) reported a solution having an objective function value of
$6,026,660 for this problem using an optimality tolerance of 0.5%. However, their
solution contains some violations in the flow conservation constraints, as shown
by Sherali et al. (1998), who obtained a solution having an objective value of
$6,058,976, which is the best solution previously reported in the literature. The
best solution found by our algorithm has an objective value of $6,055,542 which is
significantly better than the values reported in the literature for this test problem.
This solution was obtained within 4 minutes of CPU time, using four supporting
hyperplanes per arc in LB(�), and is within 10−4% of optimality (or $6 of global
optimality) as verified by our global lower bound.

The original data for the Hanoi test network presented in Fujiwara and Khang
(1990) used aCHW value of 162.5. For the sake of comparison, the above run
was repeated using this value for the Hazen-William coefficient. A global lower
bound of 4,954,941.69 and a corresponding feasible solution having an objective
cost of 4,954,945.29 was obtained after solving 541 linear programs and expending
2 minutes of CPU time. This solution is within $4 of global optimality and signi-
ficantly improves upon the best objective cost of 5,562,000 reported in Fujiwara
and Khang (1990).
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Table IIb. Optimum design for the Hanoi network (ε = 10−6)

Arc # Dia Length (m) Flow (m3/hr) Head-Loss Arc # Dia Length (m) Flow (m3/hr) Head-Loss

(m) (m)

1 40 100 19940 2.859823 19 24 400 2403.036233 2.734511

2 40 1350 19050 35.477043 20 40 2200 7831.762902 11.145477

3 40 900 7965.200865 4.704430 21 16 491.360368 1415 9.074382

4 40 1150 7835.200865 5.830782 21 20 1008.639632 1415 6.283494

5 40 1450 7110.200865 6.141881 22 12 500 485 5.159782

6 40 450 6105.200865 1.437398 23 40 2650 5141.762902 6.158480

7 40 850 4755.200865 1.709164 24 30 1230 3501.070442 5.694622

8 40 850 4205.200865 1.361194 25 30 1300 2681.070442 3.671724

9 30 74.233811 3680.200865 0.376960 26 20 850 1186.762902 3.823008

9 40 725.766189 3680.200865 0.907902 27 12 299.999150 286.762902 1.169823

10 30 950 2000 1.559305 27 16 0.000850 286.762902 0.000001

11 24 1200 1500 3.427313 28 12 750 83.237098 0.295907

12 24 3500 940 4.206805 29 16 1500 595.692460 5.580180

13 16 253.562337 1155.200865 3.216195 30 12 1999.999879 305.692460 8.778997

13 20 546.437663 1155.200865 2.338011 30 16 0.000121 305.692460 0

14 16 500 540.200865 1.551952 31 12 1600 −54.307540 −0.286252

15 12 550 260.200865 1.791357 32 16 150 −414.307540 −0.284832

16 12 2730 −133.036233 −2.566981 33 16 748.166501 −519.307540 −2.158642

17 16 1750 −998.036233 −16.930625 33 20 111.833499 −519.307540 −0.108844

18 20 419.803213 −2343.036233 −6.654887 34 24 950 1324.307540 2.154262

18 24 380.196787 −2343.036233 −2.480223
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Table IIIa. Computational results for the New York network (ε =
10−6)

ns Global Lower Global Upper # LP CPU time

Bound Bound solved

4 37878580.89 37878581.28 12953 93 min

6 37878580.89 37878581.28 10957 58 min

Test Problem 3: New York Network

The New York test network configuration and data are given in Loganathan et al.
(1985) and Fujiwara and Khang (1990). The original network has 20 nodes and 21
arcs, while the expanded network (with parallel arcs) has 26 nodes and 33 arcs (see
Subramanian (1999) for details). Since there is only a single source node, the initial
flow bounds for the arcs were calculated using the procedure described in Sherali
and Smith (1997). The computational results and the best design obtained are
presented in Tables 3a and 3b, respectively. The coefficients used in the head-loss
equation are the same as that used in Fujiwara and Khang (1990) and Loganathan et
al. (1985). The flow rate exponent value was set equal to 1.85, while the head-loss
coefficient was set equal to 851500 to conform with the flow rates being measured
in cubic-feet per second, the pipe diameters in inches, and the head-losses in feet.

The New York test network problem was first analyzed using parallel links by
Lai and Schaake (1969) and they obtained a solution having an objective value of
$77.61(106). Fujiwara and Khang (1990) applied their two-phase approach to this
problem, but the solution presented by them was infeasible. Quindry et al. (1981)
obtained a solution having a total cost of $63.581(106), while Gessler (1985),
Bhave (1985), and Morgan and Goulter (1985) obtained solutions having costs of
$41.2(106), $40.18(106), and $39.018(106), respectively. Loganathan et al. (1995)
used a simulated annealing based heuristic procedure to further improve the object-
ive value to $38.04(106). All these approaches are heuristic in nature and simply
seek to determine (at best) local optimal solutions, providing no indication of a
competitive global lower bound on the optimum value. Using our procedure, we
were able to obtain such a global lower bound of value 37878580.89 and a feasible
solution having a cost of 37878581.28. This is the best solution reported thus far
in the literature and lies within 10−6% (or within $0.4) of optimality. Note that this
result is obtained by considering 4-inch pipe increments for the set of available pipe
diameters. All the results presented above since 1985 use 12-inch pipe diameter
increments for the sake of computational ease. Hence, for the sake of comparison,
our procedure (using six supports per arc) was run using 12-inch pipe increments.
The results produced a global lower bound value of 38,067,895 along with a cor-
responding feasible solution of 38,067,935, after solving 2467 linear programs. It
was observed that while the optimal pipe diameters coincided with that obtained by
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Loganathan et al. (1995), the corresponding pipe segments lengths were different.
This is due to the fact that the head-loss values obtained by Loganathan et al. (1995)
have a feasibility tolerance of 0.1, while the results presented in this paper are
obtained using a more precise feasibility tolerance value of 10−6. Consequently,
the objective cost corresponding to the optimal solution is higher than that obtained
by Loganathan et al. (1995), and represents a relatively more accurate estimate of
the actual solution.

It can be seen from Table 3a that the computational times are significantly
higher for this test case, as compared with the computational efforts for the pre-
vious two test problems. One important reason for this difference is that no logical
test based schemes were used to generate tight initial flow interval bounds. In fact,
the initial feasible solution was itself near-optimal, but was polished to the final
solution only toward the tail-end of the branching procedure. The results for this
test problem also differ from the previous two in that the introduction of additional
hyperplanes results in an improvement in the computational effort, both in terms
of the number of nodes enumerated and the CPU time expense.

Test Problem 4: Blacksburg Test Network

Figure 2 depicts a network representation of a newly expanded subdivision of the
water distribution system in the town of Blacksburg, Virginia. The network data for
this problem was acquired from the public works department of the town, along
with other problem parameters such as pressure requirements, locations of fire
hydrants, cost factors, pipe quality that is reflected via the associatedCHW value,
and demand requirements. The unit pipe costs used in this problem represent real-
life values and include installation costs as well. The link and node data for the
network are presented in Tables 4a and 4b. The set of pipes whose diameters are
fixed is listed in Table 4a. A Hazen-Williams coefficient value of 120 was used for
all the links. Expression (2.1) was used to compute the head-losses. The flow rates
were converted using double precision from gallons per minute (gpm) into units
of m3/hr, the pipe diameters were specified in centimeters, and the head-losses in
meters. The computational results and the best design obtained are presented in
Tables 4c and 4d, respectively. The optimal flow values can be computed using the
optimal head-loss and pipe diameter values given in Table 4d via Equation (2.1)
(using appropriate coefficients for the measurement units specified above).

The computational results for the Blacksburg network also exhibit that the intro-
duction of additional supporting hyperplanes (six instead of four per arc), results
in a decrease in the number of nodes enumerated, as well as in the CPU time
expended. The best solution obtained for this test problem has an objective value
of 577066, along with a best global lower bound of 577066.
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Figure 2. Blacksburg test network configuration.

Discussion on Algorithmic Strategies and the Use of RLT(�)

The computational experience on the foregoing test problems clearly indicated
that the maximal spanning tree reduction procedure (MSTR) is an indispensable
strategy. In fact, for the two larger New York and Blacksburg test problems, when
we suppressed the procedure MSTR, we were unable to obtain good quality feas-
ible solutions within the time limit of 10 CPU hours. Furthermore, the use of
six versus four hyperplanes per arc in the polyhedral approximation of the flow
relationships improved the relative performance for these two larger test problems,
while for the other two test problems, it resulted in only a marginally greater CPU
time expense.

However, in the cases where the introduction of additional supports was be-
neficial, a significant reduction in computational time was observed. Hence, we
recommend the use of the six prescribed supporting hyperplanes per arc in the
lower bounding problem, but suggest experimenting with additional supports.

As far as the use of the lower bounding scheme RLT(�) is concerned, it was
generally observed that this yielded much tighter lower bounds, and resulted in
fewer branch-and-bound nodes being enumerated as compared with using LB(�).
On the other hand, the compromise with respect to computational effort was not fa-
vorable for these test cases, although as problem size increased, the relative benefit
of using the tighter lower bounding formulation RLT(�) became more pronounced.
Table 5a illustrates this phenomenon. However, when we switched off the strategy
MSTR, as seen from Table 5b for the Hanoi network, the RLT scheme enumerated
significantly fewer nodes and also consumed lesser CPU time, in comparison with
using the relaxation LB(�). In general, it is apparent that the relative computational
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Table IIIb. Optimum design for the New York network (ε = 10−6)

Link Dia Segment length Flow (gpm) New Cost ($) Head-Loss (ft)

index (inches) (ft)

1 180 11600 879.302755 7987090.05 5.729565

2 180 19800 786.902755 13633136.46 7.963917

3 180 7300 694.502755 5026358.39 2.330383

4 180 8300 606.302755 5714900.64 2.060921

5 180 8600 518.102755 5921463.31 1.596524

6 180 19100 429.902755 13151156.89 2.510590

71 132 4800 201.677399 2249808.73 0.704444

72 132 4800 201.677399 2249808.73 0.704444

7 112 2408.899652 140.025356 920962.07 0.400677

7 116 7191.100348 140.025356 2871547.08 1.008212

8 132 12500 253.502755 5858876.90 2.800706

9 180 9600 58.500000 6610005.56 0.031515

10 204 11200 131.124553 9006418.33 0.088965

11 204 14500 484.997245 11660095.17 1.295005

12 204 12200 836.297245 9810562.83 2.985471

13 204 24100 953.397245 19379882.31 7.515528

14 204 21100 1045.797245 16967448.83 7.808112

15 204 15500 1138.197245 12464239.66 6.708414

161 72 13200 17.039827 2917822.79 0.383495

162 72 13200 17.039827 2917822.79 0.383495

16 100 26399.999870 40.460173 8769939.75 0.766990

16 104 0.000130 40.460173 0.05 0.000000

171 72 15600 69.403955 3448336.02 6.090610

172 72 15600 69.403955 3448336.02 6.090610

17 96 0.000063 164.796045 0.02 0.000000

17 100 31199.999937 164.796045 10364474.28 12.181220

181 60 12000 38.897986 2115833.46 3.900627

182 60 12000 38.897986 2115833.46 3.900627

18 76 9745.580952 78.202014 2303611.69 3.646560

18 80 14254.419048 78.202014 3590655.93 4.154695

191 60 7200 64.220140 1269500.08 5.917147

192 60 7200 64.220140 1269500.08 5.917147

19 72 0.195798 119.652552 43.28 0.000209

19 76 14399.804202 119.652552 3403753.70 11.834085

20 60 38400 13.872692 6770667.09 1.853176

211 72 13200 80.619266 2917822.79 6.799253

212 72 13200 80.619266 2917822.79 6.799253

21 68 10595.684537 75.508042 2181889.52 6.386791

21 72 15804.315463 75.508042 3493499.38 7.211714

Total cost Existing cost New cost

217,700,927 179,822,346 37,878,581
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Table IVa. Arc data for the Blacksburg network

Arc Length Fix dia. Arc Length Fix dia. Arc Length Fix dia.

(ft) (inches) (ft) (inches) (ft) (inches)

(0, 1) 1363 – (6, 7) 95 – (15, 17) 1009 –

(0, 4) 194 – (7, 8) 419 – (18, 19) 408 –

(1, 2) 1832 – (7, 29) 208 – (18, 24) 1181 –

(1, 8) 151 – (8, 30) 110 – (21, 20) 113 –

(2, 3) 888 – (9, 10) 451 6 (22, 13) 701 6

(2, 11) 155 – (9, 12) 59 – (23, 22) 351 6

(2, 13) 309 – (9, 25) 416 6 (24, 19) 967 6

(3, 17) 699 – (11, 15) 303 12 (26, 9) 271 –

(3, 18) 1151 – (12, 11) 823 – (26, 27) 317 6

(4, 5) 1098 – (13, 14) 766 8 (26, 28) 424 6

(5, 6) 578 – (14, 23) 382 – (29, 26) 730 6

(5, 21) 611 6 (15, 16) 758 10 –

Table IVb. Node data for the Blacksburg network

Node Supply or Elevation Node Supply or Elevation

index demand (ft) index Demand (ft)

(gpm) (gpm)

0 1548.63 2163 16 −52.11 2149

1 −52.11 2141 17 −10.38 2109

2 −50.58 2132 18 −103.65 2144

3 −25.77 2121 19 −52.11 2149.5

4 −13.84 2153.5 20 −10.96 2140

5 −53.65 2141.5 21 −51.35 2141.5

6 −51.73 2129 22 −11.73 2144

7 −200.58 2127 23 −51.54 2156.5

8 −11.35 2127 24 −102.50 2178

9 −10.77 2109.5 25 −51.54 2118

10 −52.11 2121 26 −52.50 2099.5

11 −100.77 2139 27 −50.96 2102

12 −27.11 2110 28 −25.58 2098.5

13 −100.77 2136.5 29 −41.92 2120

14 −25.77 2143 30 −51.35 2123

15 −51.54 2144.5
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Table IVc. Computational results for the Blacksburg network

ns Global Lower Global Upper # LP CPU time

Bound Bound solved

4 577066 577067 2089 27 min

6 577066 577067 1975 24 min

efficiency of the RLT-enhanced scheme improves as the size of the problem (|A|, |N|,
K) and the number of possible choices for selecting the branching variable increase.
This suggests that for problems having several more independent variables (net-
works having more looped structures for reliability purposes) than those analyzed
in this paper, such an RLT-enhanced procedure might be beneficial. Furthermore
the relative advantage of the RLT approach might become favorable with further
advances in linear programming technology. This is open to future investigation.

6. Summary and Conclusions

In this paper, we have proposed enhanced lower bounding procedures along with
significantly more effective branching and partitioning strategies for determining
global optimal solutions to water distribution network design problems. A new test
problem dealing with the water distribution system in Blacksburg, Virginia, is also
introduced to the literature in this paper. Results obtained on this as well as three
other standard lems from the literature demonstrate the efficacy of the proposed
methodology. Improved solutions are reported for each of the latter problems, sig-
nificantly so for the two larger cases of the Hanoi and the New York test networks
for which solutions proven to lie within 10−4% of optimality are derived for the
first time in the literature. Further enhancements in algorithmic efficiency can be
achieved by including a more effective preprocessor to deduce valid, tighter initial
bounds on the flow variables. The algorithm can also benefit by computing sharper
upper bounds by using some local optimization scheme, rather than simply evalu-
ating the flow solution produced by the lower bounding problem. The application
of efficient schemes such as those described in Sherali and Smith (1997) to obtain
tight flow bounds or upper bounds for each node subproblem is more critical in the
case of the network design problems having several independent variables. Such
problems can also benefit via the construction of tighter lower bounding problems
through the use of an additional, suitable number of supporting hyperplanes in the
approximation of the flow relationships, once the direction of flow in any link is
determined, as well as through the proposed RLT constructs. Such investigations
and further computational tests are proposed for future research.
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Table IVd. Optimum design for the Blacksburg network (ε = 10−6)

Arc Dia Length (ft) Arc Dia Length (ft)

(inches) (inches)

(13, 14) 8.0 766 (18, 24) 10.0 0.001887

(23, 22) 6.0 351 (18, 24) 12.0 1180.998113

(26, 28) 6.0 424 (7, 29) 10.0 208

(14, 23) 4.0 63.645446 (9, 25) 6.0 416

(14, 23) 6.0 318.354554 (9, 10) 6.0 451

(9, 12) 10.0 59 (26, 9) 6.0 92.889470

(2, 3) 16.0 888 (26, 9) 8.0 178.110530

(3, 18) 16.0 1151 (22, 13) 6.0 701

(12, 11) 12.0 823 (0, 4) 16.0 194

(11, 15) 12.0 303 (21, 20) 2.0 12.848676

(15, 16) 10.0 758 (21, 20) 3.0 100.151324

(0, 1) 24.0 1363 (1, 8) 3.0 43.747654

(2, 11) 12.0 69.689856 (1, 8) 4.0 107.252346

(2, 11) 16.0 85.310144 (5, 6) 12.0 577.999064

(2, 13) 10.0 309 (5, 6) 16.0 0.000936

(24, 19) 6.0 967 (26, 27) 6.0 317

(8, 30) 4.0 0.000108 (29, 26) 6.0 730

(8, 30) 6.0 109.999892 (4, 5) 16.0 1098

(1, 2) 20.0 13.727890 (5, 21) 6.0 611

(1, 2) 24.0 1818.272110 (3, 17) 1.0 698.988391

(15, 17) 3.0 714.434858 (3, 17) 2.0 0.011609

(15, 17) 4.0 294.565142 (6, 7) 12.0 95

(18, 19) 10.0 408 (7, 8) 4.0 419

Node # Head (ft) Node # Head (ft)

0 184.660000 16 93.308922

1 168.722421 17 46.160000

2 134.430362 18 90.189925

3 129.949917 19 80.263327

4 185.105409 20 46.160000

5 148.536939 21 72.661969

6 99.580936 22 66.147108

7 94.038161 23 46.160000

8 51.706685 24 46.160000

9 97.880803 25 53.029402

10 46.160000 26 75.785923

11 112.829253 27 46.160000

12 102.771162 28 66.662345

13 104.838176 29 97.379870

14 80.826940 30 46.160000

15 103.426382
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Table Va.Comparative results between using LB(�)
versus RLT(�) for ε = 10−3

Network Nodes (RLT(�))/ Time (RLT(�))/

Nodes (LB(�)) Time (LB(�))

Two-Loop 97/99 = 0.98 33/8 = 12.5

Hanoi 115/167 = 0.69 167/51 = 3.27

New York 6871/13673 = 0.50 255/71 = 3.59

Blacksburg 2734/3445 = 0.81 51/12 = 4.25

Table Vb.Comparative results between using LB(�)
versus RLT(�) without the procedure MSTR forε =
10−3

Network Nodes (RLT(�))/ Time (RLT(�))/

Nodes (LB(�)) Time (LB(�))

Two-Loop 521/887 = 0.59 109/61 = 1.79

Hanoi 2905/15681 = 0.19 49/65 = 0.75
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